Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We tackle the novel problem of predicting 3D hand motion and contact maps (or Interaction Trajectories) given a single RGB view, action text, and a 3D contact point on the object as input. Our approach consists of (1) Interaction Codebook: a VQVAE model to learn a latent codebook of hand poses and contact points, effectively tokenizing interaction trajectories, (2) Interaction Predictor: a transformer-decoder module to predict the interaction trajectory from test time inputs by using an indexer module to retrieve a latent affordance from the learned codebook. To train our model, we develop a data engine that extracts 3D hand poses and contact trajectories from the diverse HoloAssist dataset. We evaluate our model on a benchmark that is 2.5-10X larger than existing works, in terms of diversity of objects and interactions observed, and test for generalization of the model across object categories, action categories, tasks, and scenes. Experimental results show the effectiveness of our approach over transformer & diffusion baselines across all settings.more » « lessFree, publicly-accessible full text available June 10, 2026
-
Objects undergo varying amounts of perspective distortion as they move across a camera's field of view. Models for predicting 3D from a single image often work with crops around the object of interest and ignore the location of the object in the camera's field of view. We note that ignoring this location information further exaggerates the inherent ambiguity in making 3D inferences from 2D images and can prevent models from even fitting to the training data. To mitigate this ambiguity, we propose Intrinsics-Aware Positional Encoding (KPE), which incorporates information about the location of crops in the image and camera intrinsics. Experiments on three popular 3D-from-a-single-image benchmarks: depth prediction on NYU, 3D object detection on KITTI & nuScenes, and predicting 3D shapes of articulated objects on ARCTIC, show the benefits of KPE.more » « less
-
3D hand pose estimation in everyday egocentric images is challenging for several reasons: poor visual signal (occlusion from the object of interaction, low resolution & motion blur), large perspective distortion (hands are close to the camera), and lack of 3D annotations outside of controlled settings. While existing methods often use hand crops as input to focus on fine-grained visual information to deal with poor visual signal, the challenges arising from perspective distortion and lack of 3D annotations in the wild have not been systematically studied. We focus on this gap and explore the impact of different practices, i.e. crops as input, incorporating camera information, auxiliary supervision, scaling up datasets. We provide several insights that are applicable to both convolutional and transformer models, leading to better performance. Based on our findings, we also present WildHands, a system for 3D hand pose estimation in everyday egocentric images. Zero-shot evaluation on 4 diverse datasets (H2O, AssemblyHands, Epic-Kitchens, Ego-Exo4D) demonstrate the effectiveness of our approach across 2D and 3D metrics, where we beat past methods by 7.4% – 66%. In system level comparisons, WildHands achieves the best 3D hand pose on ARCTIC egocentric split, outperforms FrankMocap across all metrics and HaMeR on 3 out of 6 metrics while being 10× smaller and trained on 5× less data.more » « less
-
3D hand pose estimation in everyday egocentric images is challenging for several reasons: poor visual signal (occlusion from the object of interaction, low resolution & motion blur), large perspective distortion (hands are close to the camera), and lack of 3D annotations outside of controlled settings. While existing methods often use hand crops as input to focus on fine-grained visual information to deal with poor visual signal, the challenges arising from perspective distortion and lack of 3D annotations in the wild have not been systematically studied. We focus on this gap and explore the impact of different practices, i.e. crops as input, incorporating camera information, auxiliary supervision, scaling up datasets. We provide several insights that are applicable to both convolutional and transformer models, leading to better performance. Based on our findings, we also present WildHands, a system for 3D hand pose estimation in everyday egocentric images. Zero-shot evaluation on 4 diverse datasets (H2O, AssemblyHands, Epic-Kitchens, Ego-Exo4D) demonstrate the effectiveness of our approach across 2D and 3D metrics, where we beat past methods by 7.4% – 66%. In system level comparisons, WildHands achieves the best 3D hand pose on ARCTIC egocentric split, outperforms FrankMocap across all metrics and HaMeR on 3 out of 6 metrics while being 10× smaller and trained on 5× less data.more » « less
-
Prior works for reconstructing hand-held objects from a single image train models on images paired with 3D shapes. Such data is challenging to gather in the real world at scale. Consequently, these approaches do not generalize well when presented with novel objects in in-the-wild settings. While 3D supervision is a major bottleneck, there is an abundance of a) in-the-wild raw video data showing hand-object interactions and b) synthetic 3D shape collections. In this paper, we propose modules to leverage 3D supervision from these sources to scale up the learning of models for reconstructing hand-held objects. Specifically, we extract multiview 2D mask supervision from videos and 3D shape priors from shape collections. We use these indirect 3D cues to train occupancy networks that predict the 3D shape of objects from a single RGB image. Our experiments in the challenging object generalization setting on in-the-wild MOW dataset show 11.6% relative improvement over models trained with 3D supervision on existing datasets.more » « less
-
Prior works for reconstructing hand-held objects from a single image train models on images paired with 3D shapes. Such data is challenging to gather in the real world at scale. Consequently, these approaches do not generalize well when presented with novel objects in in-the-wild settings. While 3D supervision is a major bottleneck, there is an abundance of a) in-the-wild raw video data showing hand-object interactions and b) synthetic 3D shape collections. In this paper, we propose modules to leverage 3D supervision from these sources to scale up the learning of models for reconstructing hand-held objects. Specifically, we extract multiview 2D mask supervision from videos and 3D shape priors from shape collections. We use these indirect 3D cues to train occupancy networks that predict the 3D shape of objects from a single RGB image. Our experiments in the challenging object generalization setting on in-the-wild MOW dataset show 11.6% relative improvement over models trained with 3D supervision on existing datasets.more » « less
-
A common failure mode for policies trained with imitation is compounding execution errors at test time. When the learned policy encounters states that are not present in the expert demonstrations, the policy fails, leading to degenerate behavior. The Dataset Aggregation, or DAgger approach to this problem simply collects more data to cover these failure states. However, in practice, this is often prohibitively expensive. In this work, we propose Diffusion Meets DAgger (DMD), a method that reaps the benefits of DAgger but without the cost, for eye-in-hand imitation learning problems. Instead of collecting new samples to cover out-of-distribution states, DMD uses recent advances in diffusion models to synthesize these samples. This leads to robust performance from few demonstrations. We compare DMD against behavior cloning baseline across four tasks: pushing, stacking, pouring, and hanging a shirt. In pushing, DMD achieves 80% success rate with as few as 8 expert demonstrations, where naive behavior cloning reaches only 20%. In stacking, DMD succeeds on average 92% of the time across 5 cups, versus 40% for BC. When pouring coffee beans, DMD transfers to another cup successfully 80% of the time. Finally, DMD attains 90% success rate for hanging shirt on a clothing rack.more » « less
An official website of the United States government

Full Text Available